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Steady-state cracks in viscoelastic lattice models
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We study the steady-state motion of mode Ill cracks propagating on a lattice exhibiting viscoelastic dynam-
ics. The introduction of a Kelvin viscosity; allows for a direct comparison between lattice results and
continuum treatments. Utilizing both numerical and analytid®iener-Hopj techniques, we explore this
comparison as a function of the driving displacem&rdand the number of transverse roNsAt any N, the
continuum theory misses the lattice-trapping phenomenon; this is well known, but the introductipn of
introduces some new twists. More importantly, for lafgesven at larged, the standard two-dimensional
elastodynamics approach completely misses#fependent velocity selection, as this selection disappears
completely in the leading order naive continuum limit of the lattice probl8i063-651X%99)13205-7

PACS numbdis): 62.20.Mk, 46.50+a

I. INTRODUCTION limiting wave speed. As pointed out by P& al. [9], one
needs dissipative terms so as to introduce a new macroscopic
Recently, there has been renewed interest in the subject ®Elocity scale in order to allow more general steady-state
dynamic fracturd1]. This has been sparked in large part by continuum solutions. Subsequent analyses by Marder and co-
a set of experimen{®,3] that have called into question some workers [6,10] did introduce dissipation in the form of a
of the predictions of the traditional, continuum mechanicsStokes term; however, they did not explicitly consider the
approach to fracture propagation. Specifically, it has beetattice-continuum comparison. In this paper, we introduce
shown that cracks exhibit a branching instability long beforedissipation in a different form by adding a Kelvin viscosity
they reach the predicted limiting speed of advance; this interm[11,9] to the equation of motion. We will see that the
stability leads to enhanced dissipation and effectively preadvantage of this choice is that the continuum model is in
vents much additional acceleration. Although there are somfact an accurate approximation to the lattice dynamics at
hints of this instability in the continuum approa¢#i], at- large enoughyu. Lattice models with this form of the vis-
tempts at a systematic analy$& have been inconclusive. cosity have recently been studied for the first time via simu-
In this work, we adopt the philosophy of Marder and lation in[9], and the strength of the viscosity appears to have
Grosg[6] and consider lattice models of fracture. These mod-a marked effect on the crack stability. More detailed studies
els provide an invaluable test bed for deciding when and if af this class of model is therefore interesting in its own right.
continuum formulation is appropriate. After all, if the tip ofa  In this paper, we choose the simplest nonlinear form for
brittle crack really occurs at the scale of the lattice, there ighe lattice springs, namely, that the spring becomes com-
no a priori reason for suspecting that a continuum approactpletely broken(with no residual forceonce it is stretched
could get the correct behavior. It is already clear, for ex-beyond some threshold. In a future publication, we will ex-
ample, that lattice models exhibit a sh&spmetimes discon- tend our analysis and results to a more general nonlinear
tinuoug jump from static cracks to propagating ones; this isforce law. This generalization appears to change very little
not reproducible if one neglects lattice scale effects. Oneualitatively with respect to the steady-state problem, al-
might hope, though, that at larger velocity there is somehough it is crucial in allowing for a direct calculation of the
effective continuum description, perhaps utilizing the cohedinear stability of the propagating fracture. As mentioned
sive zone approach of Barenbl@ftl. From our perspective, above, this stability issue is perhaps the one of most imme-
it is an open issue as to whether any such model can accdiate relevance as far as the connection to experiments is
rately predict the behavior of some specific microscopic dy-concerned. But, as we shall see, the steady-state problem we
namical system exhibiting fracture. solve here offers quite a few subtle and interesting aspects.
Historically, lattice models of fracture received major im-  The paper is organized as follows. First, we introduce the
petus from the work of Slepyal8], who used the Wiener- lattice model and discuss its basic energetic thresholds. We
Hopf technique to solve for steady-state propagation. In higlso briefly discuss the static arrested crack solutions. In the
work, he considered the case of infinitesimal dissipationnext section, we generalize the procedure we employed for
This fact made it difficult to carry out explicit comparisons finding the static solutions to solve for steady-state moving
between lattice results and continuum predictions thereofsracks for the case of one row of mass poirlts=(1), em-
inasmuch as the latter allows steady-state motion only at thploying as a foundation the Slepyan ansatz for the form of
the discrete steady-state solution. We analyze the depen-
dence of the velocity on the driving displacement, studying
*Permanent address: Department of Physics, Bar-llan Universitythe effect of the various parameters. The most important of
Ramat Gan, Israel. these parameters is the viscosity. In the following section, we
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compare these results to a naive continuum limit, finding thaspring constant 1, for éhorizontally) uniform state the equi-
whereas this naive continuum limit successfully reproducedibrium displacements are given by

the large-velocity regime, it fails to account for the nonex-

istence of solutions below a driving threshold. We then ex- v (—=Dk+1

tend our method to arbitrary, again solving for the depen- Ui =Y =—Nk+r1 = ©)
dence of the crack velocity on the driving displacement, as a

function of the other parameters. Subsequently, we agaig0 that the strain of each springKa/(1+NK), except for

compare our results to those of our naive continuum limit. I"the bottom k" springs, which have straith/(1+Nk). The
.partl'cul.ar,' we focus on the Ia'rg*ellmn, demo_nstr'atmg how system will fail catastrophically if the strain of tHespring
in this limit the standard continuum calculation is recovered.exceedSE and this gives us our first threshold

We find the surprising result that whereas the large-scale
structure of the displacement field is almost completely in- Ay=e(Nk+1) (4)
sensitive to the crack velocity for velocities less than the v '

wave speed, the small-scale structure is extremely sensitive. : . - o .
Thus, the whole velocity selection is completely a function, The second strain threshold is the Griffith criterion, which

of the lattice-scale dynamics, which no continuum theory carlS theA atwhich the uniformly strained state becomes meta-

reproduce correctly. We conclude with directions for the fu—Stable with respect to the crackgd _state. The energy per col-
ture and some general observations umn of the cracked state; j=A, is just the energy needed

to stretch thek spring to crackingzke?, whereas the energy

per column of the uniformly stressed state is
Il. MODEL, ENERGETICS, AND STATICS

We study in this paper the Slepyan two-dimensional lat- B kA?
tice model[8] for mode Il fracture, generalized to include 5U_2(Nk+ 1)° ®)
Kelvin viscosity. We treat mode Il fracture, where the dis-
placement is out of the plane and so the displacement field r$he Cracked state is thus energetica”y favored th]x_
a scalar, as a technically simpler starting point than the ingeeds
plane vector displacements of modes | and Il. The model
consists ofN infinitely long rows of mass pointéwith unit Ag=eyYNk+1. (6)
mas$ coupled horizontally and vertically by damped

“springs.” The bottom and top rows are anchored by springsNOte that this is much smaller thaxy, for largeN.

:joisltgr?c?éﬁﬂ']r?]esfgﬁr%slsalllor?g\(/ag s?%ﬁgt:g:é?gn:hle é?(gerpotv:‘/o? This system is known to possess stationary solutions that
the bottom row, which have spring constantAll the (un- represent semi-infinite arrested cracks. For completeness,

broker) springs have a viscous damping The bottom and to begin to build the machinery we will need to treat the

X . : oving crack, we briefly outline the solution for this arrested
springs break when their extension exceeds some thresho& 9 y

) . ack. We choosx=0 to be the position of the last un-
e We label the(scalay displacement of théij) mass from .- g spring. We solve separately the problem in the un-
its unstressed equilibrium position ag;. The equation of

motion for u. . reads cracked &>0) and crackedX<0) regions and then patch
b together the two solutions. To solve, we need to know the
normal modes of the vertical springs in the two regions. We

d
Uij=|1+ Un (UippjtUi—gj+Ujeatuijo1—44; ;) define the generdll X N coupling matrix as
(1) T (m+1) 1 ]
for j#1 with u; y+1=A, and 1 -2 1
d 1 -2 1
ui’1=(1+ ﬂa)(Ui+1,1+Ui—1,1+Ui,z_3Ui,1) Mn(m)=
d 1 -2 1

—ké(e—uj,) 1"‘77&)%1- 2 1 -2

7
Note that in these units, the elastic wave speed is unity, so all @
velocities are dimensionless, expressed as fractions of thEhe coupling matrix on the uncracked sideAigy(k), while
wave speed. Of particular interest is the ckse2, which is  on the cracked side it i81y(0). Denote the eigenvectors of
equivalent to a problem of rows of masses, all connected Mn(0), My(k) as &,,E,, with eigenvalue\,,A,, i
by unit-strength springs, symmetrically loaded, where the=1, ... N. [Here and in the following, lowefuppe) case
displacements are antisymmetric about the crack line. symbols refer to quantities on the crackeacracked side]

There are a number of important strain thresholds that can The equation of equilibrium on either side reads

be understood from energetics and statics. The first is the
point at which the uniformly stressed state cracks cata- 0=Ujyqj—20; j+Uj_qj+ My, (MU ;. (8
strophically. For our model, in which the bottom springs
have spring constark and the other vertical springs have The general decaying solution on the uncracked s$ig@), is
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2.0 T T T T I1l. MOVING CRACKS N=1
- o k=0.2 . . . « .
18t + k=02 | We now look at moving cracks, starting, for simplicity,
e with the caseN=1. The key is the Slepyan traveling wave
16} ' ] ansatz
// __________________________
@ 14 ff . ui(t)=u(t—ilv). (13
F 12 1 We thus only need to find the function of one variablg).
< e . Plugging this ansatz into the equation of motion, we get a
101 I differential-difference equation which is nonlocal in time:
08| d
o ] a(t)={ 1+ n&)[u(w 1/v)—3u(t) +u(t—1/v)]
o 20 40 60 80 100
N d
. —kfO(e—u(t))| 1+ n—|u(t)+A. (14
FIG. 1. Ay/Ag vs N for the cas&k=2, 0.2. dt
N We choosd =0 to be the moment at which exceeds, so
Ui,,:U,-U+ E AnT) (B, (99 Wwecan replace the step functlop abovedgy-t). _As in the
n=1 static case, we solve the equation separately in the cracked

(t>0) and uncrackedt&0) regions. It is convenient to dis-
whereuV is the uniformly strained solution presented abovecretize time with a small time steqit, so thatt;=idt. Then
and the solution for the uncracked) side is

Fn=1—%An—\/—An+%(An)2 (10) U(ti)=uu+2| ATy, (15

governs the spatial decay of theh mode, and satisfies Where now thd" are given by those roots of
(Fi)z—(Z—Ai)Fi—i-l:O.

. . T 1 1 1
The solution on the cracked sides 0, is similar: W(F_2+ 7= 1+ d_nt( 1— f) [[Mo—3—k+T "],
N (16)
ui=A—D, a &, 11)

H nz‘l l70) (&), ( which lie outside the unit circle. The numbeg= 1/(vdt) is
constrained to be an integer, which implies that our resolu-

where tion in v is limited by our resolution irdt. There are 8,

+1 roots of this polynomial{for »+0), some numben,, of

1 1 which lie outside the unit circle and thus give rise ta that

Yn=1— E)\n+ —N\pt+ Z()\n)z. (12 converges as— —. Thus, the solution for negativeis

parametrized by, coefficientsA;, 1={1,2, ... n,}. Simi-

. ) ) larly, we solve in the cracke(t) region and the solution is
This solution has ® unknowns{A, ,a,}. The equality of o\ parametrized by, coefficientsa, corresponding to the

the two different expressions far; providesN equations. o5 of Eq.(16) (with k set to zerd, which lie inside the unit

The equation of motion fox=0 provides the otheN equa-  cjrcle. It can also be shown that for sufficiently smei|

tions. Solving this X 2N inhomogeneous system yields 4 —2n, +1. Thus the entire solution is parametrized by

the desired answer. The range of validity of this solution i32nb+1 parameters. As in the static case, the two solutions
determined by the conditions thag ;<<e<<u_j ;, so that the

: : [ ) overlap, this time for B, values oft;, i=—ny,—ny

spring ati =0 is the last unbroken spring. +1,...n,—1, so the last uncracked equation iat —1
_Doing this, we find that the possibl&'s span a range, fixes y up toi=n,—1 and the last cracked equation iat
Ap<A<A, that encompasses the Griffith valuks. -1 jikewise fixesu down toi=—n,. The identity of the

Above A, the crack has to run, for it has no other alterna-yyo expressions fou in the overlap region give usng equa-
tive. BelowA, , any initial crack would heal itself. tions. The last equation we need comes from the equation of
In Fig. 1, we look atA ,/A¢ as a function of width for the motion at the crack poirit=0. Solving this inhomogeneous

natural cas&k=2 and the cas&=0.2, where the material system gives us our desired solution. Readingugfi0)= €

has been weakened along the incipient crack surface. As cagives us the relation betweenand A/e that we need.

be seen, the effect of the widbhis to widen the window, but Again, as in the static problem, there is a consistency
the effect is quite small once things are normalized\tg. constraint on the solution, namely, that(t) must not reach
The convergence is numerically consistent witfD&1/N) € beforet=0. In the =0 problem studied by Marder, this
behavior. We see thd on the other hand, has a dramatic happens for too smadl. This holds true, as we shall see, for
effect, closing the size of the allowed window significantly. sufficiently smalls.
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5 - - - where Q, is the unique root with positive real part of the
- =02 polynomial P[—(1+Kk);Q], where, in generalP(\;Q) is
i) I— 1=2.0 | defined by
P\ Q) =mwQ3%+(1-v)Q%+(1+ wQ)N.  (19)
|
3t -
. | In general, forh <0, P has one positive root, with the other
/) roots having negative real parts. Similarly, the solution for
2t /) ] t>0is
- ///
; ey 4 ] u(t)=A—aye”%2"'—aze” % (20)
« , where—(,,—q3 are the two roots with negative real part of
0 . . s P(—1;q). One can solve foA,, a,, anda; by using the
1.0 1.2 A/1 AA 1.6 18 continuity ofu and its first two derivatives at=0.
G

One can learn a few things from these equations. As
pointed out by Langer in his study of a related mofdil],
vanishing » in the continuum is a singular limit, since it
controls the highest derivative. Second, the special role of
the wave speed =1 is clear. Most interesting, however, is
. the question of when we expect this continuum limit to be
In Fig. 2, we present data on versusa/Ag for two valid. The condition is that at least some of the exponential

values ofp=0.2, 2, withk=2. Two striking features present . .
themselves. First is the divergence of the velocity, WhiChdecay rates are small, such that the solution will look smooth

occurs for both values of at A, calculated in Sec. Il as the Onjkll? lattice scale. Ffotrh analrl, Qu~ |V|k+j ’thq2~1’t.and
displacement at which the entire system wants to break apaf3~ +/(77v). 0 none of the's are small and the continuum

Note that in this model, there is nothing wrong with- 1, limit is not rellableﬁ; For large, things are different. Here,
the wave speed in our units. The second important feature 810/ 7 G2~ (7= V7°—4)/(2v). The large value 0Q,

these curves is the different behaviors exhibited at the leftc"Teésponds to the existence of a boundary layer that allows
hand edge of the graph. The lograph exhibits the typical for the matching of the highest derivative term. If this bound-
behavior of a subcritical bifurcation that ends at a square@'Y layer does not affect the lower order matctesis fairly
root type cusp. The continuation past the cusp to even lowd¥Pic@), then we would expect that the continuum result will
velocities is a numerical artifact of finitét and vanishes in 29rée with the lattice answer. o
thedt—0 limit. This cusp feature persists in the—0 limit, Itis st_ralghtforward to vv_ork out t_he_s_mall velocity limit of
and for smaller velocities the solutions are inconsistent witn€ continuum theory. Using the limiting values of &
the condition mentioned above thai)<e for t<0 and so 2POVe, and solving the linear system, one gets that
are unphysical. For largey, where the system is sufficiently ~A/Vk+1+0(v), so thatA~Ag+O(v). Thus, the con-
overdamped, the solutions persist to zero velocity. Howevetinuum solution starts at the Griffith poidis with zero ve-
the dependence on/Ag is very singular, and the graph Ipcn_y and the velocny grows Illnearlya$|s. mcreaseq. Con-
approaches zero velocity @, very quickly. Before pro- tinuing the calculation to first order in, we fmd v
ceeding to a full survey of parameter space, it is useful to— (A/A¢—1)/[(vk+1—1)»]. Thus, the velocity is in-
develop a naive continuum limit for our system, which is VErsely proportional tay. This is as expecte[], since for
analytically more tractable and serves as a useful benchmatk<1 the velocity only enters into the combinatiam .

for our discussions. We do this in the next section. The large velocity limit is also analyzable. Again using
the g's found above, we obtain to leading order that

=[(1—-A/Ay)/(kp?)] Y so thatv diverges atA,. Note

also that in this regime scales as/7, so that as viscosity
increases so does the velocity. This is because the only rea-
son that propagation at>1 is possible is because of the
viscosity, so the larger the viscosity the more efficient the
propagation.

As 7 goes to zero, the continuum limit must break down.
The velocity increases very rapid{gat a rate proportional to
1/m) to near 1, and stays there uniilis nearA;, at which
point it rapidly diverges. The velocity crosses unity /t
=(1+k)?? with slope of orderp?3. Thus, with vanishingly
small 7, steady-state propagation, at least in our naive con-
tinuum limit, is only possible at the wave speeé 1.

We are now in a position to compare our lattice calcula-
tion to the continuum results. For example, Fig. 2 above also

FIG. 2. Dimensionless velocity vs A/Ag for =0.2, 2 for
N=1, k=2. The calculation was done wittit=0.05. The solid
lines are the naive continuum results for the same parameters.

IV. NAIVE CONTINUUM LIMIT

We now develop the naive continuum limit of the equa-
tion of motion forN=1 steady-state moving cracks. We ob-
tain this limit by simply replacing the finite difference by a
derivative, yielding

u+A.
(17

d
1+ ﬂa

) d\(1 d?u
U(t): 1+na FW—U —kﬂ(—t)

The solution fort<O0 is

u(t)

14k

+A e,

(1

8

displays the continuum curves. We see that, in general, the
continuum calculation is very good only at the largest veloci-
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FIG. 3. nv vs A/A; for =1, 1.5, 2, 4, 8 foN=1,k=2. The

calculation was done withit=0.05. FIG. 4. Dimensionless velocity vs A/Ag for =0.2, 2 for

fi Th t get ivel f I N=1, k=0.2. The calculation was done withti=0.05. The solid
1es. The agreement gets progressively worse Tor Smaller Ve, oo o6 the naive continuum results for the same parameters.

locities and breaks down completely farless than the ar-

rest vaIu%J . This must be, since the continuum calculation To begin, we define the Fourier-transfotm of the right-
has the velocity going smoothly to zero A, which it  and left-hand pieces of thefield as follows:

never does due to the existence of arrested solutions. Also,
the agreement is better at larggr above some criticaly
(about »=0.5 for k=2), the continuum curve serves as an
upper bound on the lattice curve and thus is a fair approxi-
mation until we start getting close to the arrest value. All oflt should be noted that™ are analytic in the upper and lower
this is to be contrasted with what would have been obtainetialf-planes, respectively. The Fourier transform of the
had we sety=0 and introduced instead a Stokes velocityfield, T, is just the sum of the two par8(K)=T"+T". In
term proportional tol. Then, the continuum theory has a terms of these fields, the equation of motion reads

limiting velocity of v =1 and since this feature is not shared . 3 o 2 . _

by the lattice dynamics, the continuum approximation would 0=[i7vK*—(1-v)KJu—(1-invK)l

be nowhere accurate. ; o~

We saw from the continuum calculation that for velocities K(L=ioK)u+A5(K) —kyou(0). 22
v <1, the relevant parameter for the continuum calculation isThe last term is noteworthy, and arises because the time
nv. We can test this for the lattice model by plottin@  derivative does not act on th#function in the last term in
versusA. This is presented in Fig. 3. It is to be emphasizedEq. (17). Expressingi in terms of its component pieces, we
that this scaling is valid only for asymptotically large For  recognize that the coefficients &~ are nothing but
finite #, though, as opposed to what obtained in our con(—1:—iK),P[—(1+k);—iK] respectively, which we en-
tinuum calculation, the existence of the lattice length scale&ountered in our solution above, so that the the equation of
ruins the simple scaling. In practice, must be fairly large  motion reads
(about 10 or spfor the scaling law to be a good approxima-
tion to the lattice results. 0=P[—(1+k);—iKJU +P(—1;-iK)U"

It is interesting to see what happens for smalléVe saw
that the window of arrested solutions is significantly smaller +44(K)~koqou(0). (23
for smallerk. In Fig. 4, we present the analog of Fig. 2, but Next, we factor the's is terms of their roots:
this time withk=0.2. We see that the results are as far from
the continuum limit as they were with the lardefwhile the P[—(1+Kk);—iK]=inv(K—iQ)(K+iQ,)(K+iQj),
window of arrested solutions is smaller, so is the value of 24)
Ay/Ag, so the entire picture is just reduced to a smaller P(—1;—iK)=ingv(K—igqy)(K+igy)(K+igs).

U5 (K)= flvdt&(it)e”(“tu(t). (21)

range ofA.
g Dividing Eq. (23) by inuv(K—iq.)(K+iQ5)(K+iQ3) we
Wiener-Hopf solution obtain
Before we turn to genera, we will present the equiva- 0— K_inu_ (K+igy)(k+igs) o+
lent Wiener-Hopf solution of theN=1 problem. This K—iq; (K+iQ2)(K+iQ3)

method is more involved for the cabe=1, but it is a model

for the Wiener-Hopf solution we will present for genehl _ S
which will allow us to draw analytical conclusions in the nv(,Q,Q3
large N limit. The basic method follows that of Marder and .
Grosg[ 6], but the presence of viscosity adds some new twists + ik

which are worthy of comment. (K=ig)(K+iQ2)(K+iQ3)

(K)

u(0), (25
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where we have used th¥K) to simplify its prefactor. We use the fact thgq,q3;=—P(—1;0)/(nv) = 1/nv to rewrite our
equation as
K—i K+i K+i A ik
0= .QlTJ7+ ( IQ2)( _Q3),U+_ Q2Q35(K)+ _ _ _
K-iqy (K+iQ2)(K+iQ3) Q2Q3 (K=ig)(K+iQ2)(K+iQ3)

To proceed, we have to decompose the two inhomogeneous terms into pieces analytic in either the upper or lower half planes.
The result is

u(0). (26)

i i
K+io™* K—i0+)

_ K_i_QlTJ,+ (K"‘_iCIz)(Kﬂ%) o Adz03
K—iq (K+iQ2)(K+iQ3) Q2Q3
N ik 1 K@ Q+Qy)

(01 +Q2)(91+Q3) | (K—=igy) (K+iQ2)(K+iQj3)

The key to the Wiener-Hopf method is the realization that the sum of the terms analytic in either half plane have to vanish,
allowing us to solve foi*. We find

u(0). (27)

Tt = 1AQ203(K+iQp)(K+iQ3) iK[K+i(gq1+Q2+Q3)] u(0)
Q2Q3(K+i0")(K+igp)(K+igs) (a4 Q2)(dy+ Qs)(K+igp) (K+igs) ,
28
— —i1AQy(K—iqy) N ik 0 29
T GK-10)(K-1Qy) ' (@t Q(a: 7 Qe (K—1Qp
|
Notice that the poles ii* give rise to exactly the same V. GENERAL N

exponential terms iu that we found previously. It can be
explicitly verified that the two forms of the solution are

equivalent. For our purposes, it is sufficient to examine Wha[arbitrary N. The baSif: method is the same. we solve the
happens in the small limit. Then, as we have already noted, problem on the two sides of the crack tip position and patch

qs,Q3~1/(7v). The first, A, term on the right-hand side the .two solutions together. _The solutipn on either side is
approaches a finite limit, wittD(v?) corrections, whereas 29@in asum over modes, which are a direct product of modes
the secondy(0), term vanishes linearly imv. More explic- N the vertical direction, given by the eigenmodes of
itly, we find My(m=0k), with the modes in the horizontal direction.
Thus there are a total dfin, and Nn, modes on the un-
cracked and cracked sides, respectively. The solutions on
u(o). either side have to overlap for each value of the vertical
29 indexj, so there are an appropriate number of equations for
the unknown coefficients of each mode. As 81, the
) conditionu(0,1)=e€ is used to determine the driving cor-
Using 0;=0,=1, Q:=Q,=V1+k, and q3=Q3=1/7v,  responding to a given velocity.
and using the inverse Fourier transform to evaluate this in  we can also generalize our continuum calculation to finite
the limit x—0", we obtain N. As in theN=1 case, we replace finite differencestin
with derivatives, giving uN coupled third-order differential
A equations. Again, we can solve these exactly on either side
(0)= - u(0). (30 of the crack tipt=0, and match the functions and their first
Vitk 1+y1+k and second derivatives at this point. The functions are char-
acterized byN modes on the uncracked side, with decay rates
Recognizingu(0)= € andJ1+k=Ag/e, after reorganizing Qi,, and 2N modes on the cracked side, with decay rates

It is straightforward to extend the lattice calculations to

T~ 1AQ203(K+iQ) ik v
Q2Q3(K+i0")(K+igy) (g:+Q,)(K+igy)

knv

we obtain O2n,03n - FOr eachn, Q, , is the positive root of the poly-
nomial P(A,) defined in Eq.(19) above. Let us denote the
I other roots of this polynomial, which we will need later, by
7 :( A 1 1t 1+k7 (32) —Qzn,—Q3zp. Similarly, —g,,,— 03, are the two negative
A k (real parj roots of P(\,,) with the third(positive root being

labeled byq;,. Implementing these procedures, we again
which is easily seen to be equivalent to what we obtaineatalculate the crack velocity as a function &fAg. Again,
from the direct method. As can be appreciated, the Wienemwe compare this data to that of our naive continu(imx)
Hopf method is much more involved than the direct methodcalculation for the same value bf We present in Fig. 5 the
Nevertheless, it will be an essential tool for analyzing theresults for our overdamped casg=2, for N=1,2,5,10,15.
largeN limit. Qualitatively, not much changes witth The most important
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FIG. 5. Dimensionless velocity vs A/Ag for =2 for N=1,

2,5, 10, 15k=2. The calculation was done witft=0.1. The solid FIG. 6. Dimensionless velocity vs A/Ag in the continuum
lines are the naive continuum results for the same parameters.  5pnroximation foN= 10, 50, 200, 400, withy=2, k=2.

feature is that the middle section of the curves get progresthe equations for alj # 1 are translationally invariant if

sively flatter asN increases. This must be the case, since theind become algebraic. The structure of these equations is

point of divergence A, measured in terms oA, in-

creases abl2. We also note that the data for low velocities 0=[inv K3—(1—v2)K2]TJj+(1—i 7Kv) My 1, (1)Tj

seem to converge fairly rapidly @ increases, and the rate . v

of convergence slows asincreases. Again, as in thé=1 + 6j A L =i puK)Uy + 5; NA 6(K). (33

case, the continuum results accurately reproduce the lattice

calculations for large and are completely wrong for small Defining f(K)=[i vK®—(1-v?)K?]/(1~i7vK) and de-

v, missing the lattice-induced arrest phenomenon. noting thenX n identity matrix asZ,,, we can, using Cram-
er's rule, explicitly solve fofli, in terms ofti; as follows:

VI LARGE N oo Gehlf(KTE MBI (D"
The physical problem of cracking a macroscopic object U2= dety_1[ f(K)Z+ M(1)] U1 dety_1M(1) (K),
corresponds to the limit of large, but finitdl, The lattice (34

calculations are prohibitively expensive for too large

However, our naive continuum calculations can be carriedvhere, in the last term, we have used $() to simplify

out for fairly largeN's. Using the fact that for small, the  the determinant. To treat the=1 equation with its step

convergence iN is rapid, and for largep, the naive con- functions, we define

tinuum results are reliable, we can piece together a fairly

complete picture of what we expect in the macroscopic limit.

In particular, it is interesting to compare this with the stan-

dard continuum theory in order to understand the limitations

and successes of that theory. so thati,=T"+T~. Thej=1 equation now reads
To begin, we present in Fig. 6 the results of our naive

continuum theory, extended to larger valuesNofThe most

striking feature of this graph is the slow convergence that 0=(1-invK)

sets in neaw =1. Exploring numerically, we find that for

fixed v<1, the data converges with larg¢as N~ How-

ever, the coefficient of thi?N~! correction becomes ever

larger asv approaches unity. Looking at the value ofA g

wherev =1, it appears to diverge &6 asN—. Thus, in (—1)NA

the macroscopic limit, the crack speed is effectively bounded —knouy(0) - det, T M(1) 8(K). (36)

by the wave speed. -t

To proceed further in studying our naive continuum y;itiolving by de FIK)Z+ M(D)V(1—i 70K). we get
theory at largeN, it is useful to derive the Weiner-Hopf plying by det-4[f(K) (DI 7 K), g

\?v(?:;::]lgn To do this, we first Fourier transform the fields, 0=det [ f(K)Z+ M(0)Tu™ +det[f(K)Z+ M(K)Tu*
B knvu,(0)det,_ [ f(K)Z+ M(1)]

nizf vdto(=t)e'tu (t) (35

[f(K)—1]T,

defy o[ f(K)T+ M(D]
" dep_[F(K)Z+ M(1)] <Y

(—1)NAS(K).

« dk . 1-inpvK
u,~(t)=f_xﬂe—'v*<‘nj(r<). (32 7 -
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The determinants are easy to calculate in the diagonal bases #fftheand have zeros #’s corresponding precisely to
times the roots of the polynomial¥(A,),P(\,) that we encountered in our original real-space calculation. We can thus write

N
o|e1N[f(K)I+M(k)]=(1—inuK)*NH1 P(A,;—iK)

i NN
:(JW) T1 (K=iQu) (K+iQz) (K +iQay) (39)

and, similarly,

N
de’g\,[f(K)IJrM(O)]:(l—ian)’Nﬂl P(\,;—iK)

N
:<1_|7]UK) nl:[1 —id10) (K+idzn) (K+igsp). (39

Similarly, if we denote the eigenvalues 6y _,(1) by /,, m=1, ... N—1, we can express dety[ f(K)Z+ M(1)] in terms
of the rootsyxym,, —x2m and — xam of P(/'):

N—-1
dety_1[f(K)ZT+M(1)]=(1—inguK) Nt [[1 P(/ i —iK)

i N—-1 N-1
=($) T1 (K= ixm) K+ ) (K +xa). (40)

We can then reexpress E@8) as

_ K=iQqn_ _ (K+|Q2n)(K+|Q3n)
0_1;[ K—igqp ! +H (K+|Q2n)(K+|Q3n)

KT (K =i x 1 m) (K+ixom) (K+ixgm)

- - - u.(0)— O(K 41
Mo (K=10,0) (K+1Q20) (K+1Q3,) 107 (0)MT,01,Q0nQan “n
Ianﬁ,, (Kdl'ic|2n)(K+ian)_.Jr
= + —— ——U
1;[ _|q1n 1;I (K+|Q2,n)(K+|Q3,n)
ika(K_inm)(K+iX2m)(K+iX3m) Aonl3n
- - - - - - 0)—A (K 42
(K101 (K 1Qom(K+1Qa, (@211 g, o) oK) “a
|
where in the last step we applied the identity TﬁwA( i A2n03n(K+iQ2n)(K+iQ3p)
K+i0+ Q2,nQ3,n(K+iq2,n)(K+iq3,n) .
T 6100020030 = (= 70) " detMy(0) = (o) ™", (44)
(43 In the largeN limit, we can use this to evaluateexplic-

itly. [We need not concern ourselves with, since fort
and where we have used the easily verified fact that<O, ui(t) is always smaller tham,(0) and so does not
detMy(m)=(—1)N(mN+1). Note that this product result contribute to leading ordgrTo proceed, we need the explicit
nicely reduces to the result we previously obtained for form of the q,Q’s to leading order. As we shall see, the
=1. Again, as in thdN=1 case, to proceed with the Wiener- behavior is controlled by modes where<N. For these
Hopf method we need to break up the last two terms intgnodes, we may approximate the eigenvalues\t(k) by
pieces analytic in the upper and lower half planes. TH®)  A1p=Azn= —n°7?/N?, SO that  Q1,=Q2p
piece does not appear to have a simple breakup. However, (n7)/(Ny1— v?), Qsn=(1—v?)/(nv). (Here we have
for large N, the effect of this term becomes irrelevant, sinceassumed thai is less than and not too close t9 Similarly,
u;(0) is a factorNY2 smaller thamA. The last term is easily for My(0), we find Ny ,=Xp,=—(n—3)?7%N?, so that
broken up as we did in thd=1 case. We find that to lead- q;,=0,,= (n—3%)w/(NV1—0?), dan=(1—v?)/(7v). No-
ing order tice that sinceQz,~03,, the factors involving these quan-
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tities cancel. This has the immediate consequence that the Rez{e“"”tﬁ+)|_io+=iA. (45)
viscosity » has completely dropped out of the problem in
this limit. Evaluating the residues at the other poles is more compli-

The remaining expression has poles -at0" and at cated. To proceed, let us cut off the product at some large
—ig,,. We can evaluate the residue of each of these poles=N.<N. Then, our approximate expressions for tjis
explicitly. The residue at-i0* is immediately seen to be andQ’s are valid. This leads to

1
Ne+ =

r 2

r ! I'N 3
n—i C+§—n

1 1
n— E)1“(NC+ 1)F3(§)F(n)F(NC+ 1—n)

Rege KvgiH)| o — _je-[(—3)mtlNV1I=0?)
—M2n

1
"2

F(
L 1

:_ie[(n§)wut]/(N\1v7>T+O(—N ) (46)
n—§> 72T (n) ¢

We then take the limit oN.—o° to find the final answer for the macroscopic displacement field

% F(n—%
uy(t) = 6(t)A 1—n§:‘,1 (

—>e[(n%)7ﬂ)t]/(N\/lvz)
1) 3
n_z w2I'(n)

2 1 —
=0(t)A(1—;sin‘le‘(imt)’(”\l"’z)>. (47)

This final answer exhibits the well-known square rootrection and is of course invisible to the standard continuum
branch cut at the crack tip locatiots=0. It is worth noting  theory.
that this behavior of the displacement gives rise to a macro- This observation implies that the entire issue of velocity
scopic stress field that actually diverges as#/(recall the ~ Selection via the condition thai(x=0y=1) be fixed to
extra derivative due to the Kelvin viscositpear the crack equal the breaking displacement is out of reach of the lead-
tip. This surprising finding renders invalid thel Zontinuum  ing order macroscopic limit. Thus, as an example, the veloc-
calculation of Langef11] who studied this problem with the ity depends explicitly ony (as opposed to the macroscopic
additional complication of a finite length cohesive zone. Adisplacement, which explicitly does natven for arbitrarily

correct continuum formulation that does reproduce the esserrgeN. Conversely, calculating the macroscopic field in the

tial formula Eq.(44) is presented in the Appendix. 10
A comparison of the above prediction with the numeri-
cally computed displacement is shown in Fig. 7 for the case
N=25, plotted as a function of the macroscopic seeleN. 0.8 |
We see that our larghl analytic result correctly reproduces
the large-scale structure of the crack displacement. The
agreement is a bit worse, though still quite good, close to the
crack tip. To demonstrate this more quantitatively, we
present in Fig. 8 the ratio of the crack displacemey{t) to
the largeN analytic result for variousN. Now the data is
plotted as a function of the microscopic scate We see that
curves are all quite similar. They have a square-root diver-
gence at the origin, since the analytic prediction is ti@)
vanishes at=0, whereas the true answer is finite. By 0.0
=25, they have converged to a limiting curve. This means
that the finiteN theory possesses a well defined microscopic
structure, in addition to the universal macroscopic structure FIG. 7. u,(t)/A vs vt/N in the continuum approximation for
defined by the standard continuum theory. This microscopi&=2, =2, N=25, compared with the largd analytic result, Eq.
structure is on the scale of the lattice constantthe y di- (47).

vt/IN
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25 . - - . proportions. In such a zone, the displacement would be such
e N2l that the force law would be beyond the linear spring regime
e N2 but not so large that the force would be effectively 2elbit
o0t N=5 were of large size, it would lead to a more complex con-
________________ N=10 tinuum theory along the lines suggested by Langer and co-
= — N=D5 workers [11,17; if it were purely on the lattice scale, it
"§1 5 would change nothing. Our initial evidence suggests the lat-
& ' ter, and we hope to report on this in the near future.
= As far as the physics of fracture is concerned, we must
I address several issues that go well beyond the studies in this

_k
o

e s mrr e ——— ey

R e PR T e paper. Since most of the experiments concern mode | cracks,
we need to extend our results to that situation; this is tech-
nically challenging but should not lead to any significant
surprises. Next, we must explicitly investigate the stability of
our steady-state equations. Finally, all lattice models leave
out the possibility of ductile behavior involving the emission
FIG. 8. Uy(t)/Uagymp(t) VS vt in the continuum approximation of dislocations from the cr_ack t@p; cor_nparisqn to experiment
Whereu e, mpiS the largeN asymptotic result Eq47), for N=1, 2, and to molecular dyqa_mlcs simulations will ena}ble us to
5, 10, 25. Againk=2, n=2. learn when these additional phenomena are crucial or, alter-
natively, when one can get by with a purely “brittle” model.
continuum limit does not suffice for determining the crack
speed, which is always fixed at the lattice scale. Situations ACKNOWLEDGMENTS
with equivalent macroscopic fields can have arbitrarily dif-
ferent crack velocities.

0.5 : '
0 2 4 6 8 10

vt

H.L. acknowledges the support of the NSF under Grant
No. DMR98-5735. D.A.K. acknowledges the support of the
Israel Science Foundation and the hospitality of Professor A.
VIl. SUMMARY Chorin and the Lawrence Berkeley National Laboratory. The
. S . work of D.A.K. was also supported in part by the Office of

In this paper, we have Stl.Jd'ed In some detal_l the Ste‘."‘dyl'znergy Research, Office of Computational and Technology
state motion of mode Il viscoelastic cracks in a lattice ! : .

Research, Mathematical, Information and Computational

f.“o‘?'e' of the microscopic dynamics. The most ImportantSciences Division, Applied Mathematical Sciences Subpro-
findings are as follows.

. - . gram of the U.S. Department of Energy under Contract No.
(.1) The existence of a minimum velocity for c_rack ProPa- pE_AC03-76SF00098. Also, D.A.K. acknowledges useful
gation is dependent on the viscosity. At ley(and indeed in

the lattice models without dissipation that have been studiegonversatlons with L. Sander and M. Marder.

to datg, the steady-state branch starts at fimite=or highly .
damped systems, on the other hand, the branch extends AHPPENDIX: THE DIRECT CONTINUUM CALCULATION

the way tov =0 at the upper end of the allowed range/of In this appendix, we present a direct continu(imx and

for arrested cracks. _ y) calculation of the steady-state crack. We will see that it
(2) For finite N, a continuum approadfin x) for the crack  recovers directly the leading-order results of the laxgamit

does accurately predict the lattice results for values of thegjculation presented in Sec. VI above.

driving away from the lattice trappin@ow or zero velocity To begin, we write the displacement fielgx,y,t) = u(t

regime. o —xlv,y) in Fourier space:
(3) Taking the macroscopic limitN—o) allows us to

recover the expected macroscopic behavior that the displace-

ment grows as/Xx— X, once we leave an inner core region y © dK_ _ik tsinf[ky(W— y)]

of the lattice scale. The coefficient of this term can be calcu- U(LY)=A{m+ f_mﬁU(K)e ’ T sinh(k,W)
lated by using a continuum theory with the proper boundary Y (A1)
conditions. A key feature of this macroscopic theory is that

the viscosity becomes irrelevant.

(4) However, the velocity selection as a function of thewhereky satisfies the dispersion relation
imposed displacement is wholly controlled by the core and
cannot be accurately arrived at by any theory that does not
explicitly consider the lattice scale. In particular, viscosity (1—ipuK)(—K2+kJ)+v?K?=0. (A2)
plays a crucial role in this feature of the physics.

As mentioned in the Introduction, the next step in our The crack is chosen to begin a0, sou(x<0,0)=0.
research program will be to consider the modifications intro-On the crack surfacg=0, x>0, we must sedu/dy=0.
duced into the aforementioned results by having a continuNote that this condition implies that the normal stress on the
ous but nonlinear force law. In particular, having a force thatfree surface[1+ n»v(d/dx)](du/dy) vanishes. However, it
immediately drops to zero means that there is no way that this incorrect to assume, as Landér] did in a parallel cal-
system could dynamically decide to create a ‘“cohesive”culation, that the vanishing of the normal stress is a sufficient
zone of mesoscopi(@.e., scaling as a positive power b condition, as this allows fofunphysical displacement fields
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that do not havedu/dy=0. As we have seen, the macro- kyW 2
scopic field possesses a square-root singularity at the origin, 1+ T 1
while Langer's condition eventually results in a much m n— 5) T
weaker x®¥? singularity (in the absence of Barenblatt type K
AR W coth(k, W)= A5
surface stressgsOur condition implies y kW) nﬂl 1+ kyW| # (A)
. dK naw
f_wﬁn(K)(_ky)COt“kyW)z —w TG Now, we can use the dispersion relation to eliminiggen

(A3) favor of K. If we define AM=—[(n—H7/W]? and A=
—(nw/W)?, then we find that
or, Fourier transforming this equation,

A k, W coth(k, W) ﬁ AnP (i~ 1K)
- ~ CO = — -
U(K) (= kyW)coth(k,W) = = 8(K) + G~ (K), (A4) Y Y n=1 MpP(Ap; —iK)

5 Notice thatA,,\,, are precisely the same as those in the
whereG™ is the transform of9(—t)G and has no zeros or finite-N calculation fom<¢N, if we identify W= N. Express-
roots in the lower half plane. To proceed, we use the identityng the P’'s in terms of their roots, we get

(A6)

Q10Q2nQ3n(K—iqyn)(K+ig,n)(K+iqsy)

[}

k,W coth(k,W)= - - - . A7
y f'( y ) rJ;[l ql,nq2,nq3,n(K_'Ql,n)(K+|Q2,n)(K+|Q3,n) ( )
Plugging this into Eq(A4), and reorganizing, we obtain
K+i K+i K—i - K—i
Tt Q2,nQ3,n( QZ,n)( Q3,n) +,[]_H ql,n( Ql,n) =A5(K)—WG_H Q1,n( Ql,n) (A8)

n O2nlan(K+i1Qon) (K+iQ3p) n Qin(K—idyn) n Qin(K—idyn)

Decomposing thes function as in the finiteN case, and separating out the pieces analytic in the upper half plane, we get

TJ+H Q2,nQ3,n(K+iq2,n)(K+iq3,n) _ A i

2 UonGan(K+102) (K+1Qsy)  WKFi0"* A9

so that

'[j+: iA QZ,nq3,n(K+iQZ,n)(K_HQS,n)
K+i0+ n QZ,nQE,n(K+iqz,n)(K+iq3,n).

That this result is the direct equivalent of our leading-order fihiteesult, Eq.(44), is clear. One word of interpretation is
called for, however. To achieve the macroscopic limit of our filNteesult, we needed to take the widtHarge. This, in turn,
implied that viscosity was irrelevant in the macroscopic lifoitless we scaled it by a power Nfwith no obvious physics
justification. If we work directly in the continuum, however, we obtain the same final result without having té\tadeye.

Thus, the ratio of the viscous length scaleWibis arbitrary in this continuum calculation. Nevertheless, if we examine the
largeW limit of our continuum calculation, we again will find that viscosity becomes irrelevant. It is also worth reiterating that
this continuum calculation has no sign of the subdominant pieces that control velocity selection.
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