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Steady-state cracks in viscoelastic lattice models
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We study the steady-state motion of mode III cracks propagating on a lattice exhibiting viscoelastic dynam-
ics. The introduction of a Kelvin viscosityh allows for a direct comparison between lattice results and
continuum treatments. Utilizing both numerical and analytical~Wiener-Hopf! techniques, we explore this
comparison as a function of the driving displacementD and the number of transverse rowsN. At any N, the
continuum theory misses the lattice-trapping phenomenon; this is well known, but the introduction ofh
introduces some new twists. More importantly, for largeN even at largeD, the standard two-dimensional
elastodynamics approach completely misses theh-dependent velocity selection, as this selection disappears
completely in the leading order naive continuum limit of the lattice problem.@S1063-651X~99!13205-7#

PACS number~s!: 62.20.Mk, 46.50.1a
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I. INTRODUCTION

Recently, there has been renewed interest in the subje
dynamic fracture@1#. This has been sparked in large part
a set of experiments@2,3# that have called into question som
of the predictions of the traditional, continuum mechan
approach to fracture propagation. Specifically, it has b
shown that cracks exhibit a branching instability long befo
they reach the predicted limiting speed of advance; this
stability leads to enhanced dissipation and effectively p
vents much additional acceleration. Although there are so
hints of this instability in the continuum approach@4#, at-
tempts at a systematic analysis@5# have been inconclusive.

In this work, we adopt the philosophy of Marder an
Gross@6# and consider lattice models of fracture. These m
els provide an invaluable test bed for deciding when and
continuum formulation is appropriate. After all, if the tip of
brittle crack really occurs at the scale of the lattice, there
no a priori reason for suspecting that a continuum appro
could get the correct behavior. It is already clear, for e
ample, that lattice models exhibit a sharp~sometimes discon
tinuous! jump from static cracks to propagating ones; this
not reproducible if one neglects lattice scale effects. O
might hope, though, that at larger velocity there is so
effective continuum description, perhaps utilizing the coh
sive zone approach of Barenblatt@7#. From our perspective
it is an open issue as to whether any such model can a
rately predict the behavior of some specific microscopic
namical system exhibiting fracture.

Historically, lattice models of fracture received major im
petus from the work of Slepyan@8#, who used the Wiener
Hopf technique to solve for steady-state propagation. In
work, he considered the case of infinitesimal dissipati
This fact made it difficult to carry out explicit comparison
between lattice results and continuum predictions ther
inasmuch as the latter allows steady-state motion only at

*Permanent address: Department of Physics, Bar-Ilan Univer
Ramat Gan, Israel.
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limiting wave speed. As pointed out by Plaet al. @9#, one
needs dissipative terms so as to introduce a new macrosc
velocity scale in order to allow more general steady-st
continuum solutions. Subsequent analyses by Marder and
workers @6,10# did introduce dissipation in the form of
Stokes term; however, they did not explicitly consider t
lattice-continuum comparison. In this paper, we introdu
dissipation in a different form by adding a Kelvin viscosi
term @11,9# to the equation of motion. We will see that th
advantage of this choice is that the continuum model is
fact an accurate approximation to the lattice dynamics
large enoughhv. Lattice models with this form of the vis
cosity have recently been studied for the first time via sim
lation in @9#, and the strength of the viscosity appears to ha
a marked effect on the crack stability. More detailed stud
of this class of model is therefore interesting in its own rig

In this paper, we choose the simplest nonlinear form
the lattice springs, namely, that the spring becomes c
pletely broken~with no residual force! once it is stretched
beyond some threshold. In a future publication, we will e
tend our analysis and results to a more general nonlin
force law. This generalization appears to change very li
qualitatively with respect to the steady-state problem,
though it is crucial in allowing for a direct calculation of th
linear stability of the propagating fracture. As mention
above, this stability issue is perhaps the one of most imm
diate relevance as far as the connection to experimen
concerned. But, as we shall see, the steady-state problem
solve here offers quite a few subtle and interesting aspe

The paper is organized as follows. First, we introduce
lattice model and discuss its basic energetic thresholds.
also briefly discuss the static arrested crack solutions. In
next section, we generalize the procedure we employed
finding the static solutions to solve for steady-state mov
cracks for the case of one row of mass points (N51), em-
ploying as a foundation the Slepyan ansatz for the form
the discrete steady-state solution. We analyze the de
dence of the velocity on the driving displacement, study
the effect of the various parameters. The most importan
these parameters is the viscosity. In the following section,

y,
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PRE 59 5155STEADY-STATE CRACKS IN VISCOELASTIC LATTICE . . .
compare these results to a naive continuum limit, finding t
whereas this naive continuum limit successfully reprodu
the large-velocity regime, it fails to account for the none
istence of solutions below a driving threshold. We then
tend our method to arbitraryN, again solving for the depen
dence of the crack velocity on the driving displacement, a
function of the other parameters. Subsequently, we ag
compare our results to those of our naive continuum limit.
particular, we focus on the largeN limit, demonstrating how
in this limit the standard continuum calculation is recover
We find the surprising result that whereas the large-sc
structure of the displacement field is almost completely
sensitive to the crack velocity for velocities less than
wave speed, the small-scale structure is extremely sens
Thus, the whole velocity selection is completely a functi
of the lattice-scale dynamics, which no continuum theory c
reproduce correctly. We conclude with directions for the
ture and some general observations.

II. MODEL, ENERGETICS, AND STATICS

We study in this paper the Slepyan two-dimensional
tice model@8# for mode III fracture, generalized to includ
Kelvin viscosity. We treat mode III fracture, where the d
placement is out of the plane and so the displacement fie
a scalar, as a technically simpler starting point than the
plane vector displacements of modes I and II. The mo
consists ofN infinitely long rows of mass points~with unit
mass! coupled horizontally and vertically by dampe
‘‘springs.’’ The bottom and top rows are anchored by sprin
to lines. The system is loaded by extending the top row
distanceD. The springs all have spring constant 1, except
the bottom row, which have spring constantk. All the ~un-
broken! springs have a viscous dampingh. The bottom
springs break when their extension exceeds some thres
e. We label the~scalar! displacement of the~i,j! mass from
its unstressed equilibrium position asui , j . The equation of
motion for ui , j reads

üi , j5S 11h
d

dtD ~ui 11,j1ui 21,j1ui , j 111ui , j 2124ui , j !

~1!

for j Þ1 with ui ,N11[D, and

üi ,15S 11h
d

dtD ~ui 11,11ui 21,11ui ,223ui ,1!

2ku~e2ui ,1!S 11h
d

dtDui ,1 . ~2!

Note that in these units, the elastic wave speed is unity, s
velocities are dimensionless, expressed as fractions of
wave speed. Of particular interest is the casek52, which is
equivalent to a problem of 2N rows of masses, all connecte
by unit-strength springs, symmetrically loaded, where
displacements are antisymmetric about the crack line.

There are a number of important strain thresholds that
be understood from energetics and statics. The first is
point at which the uniformly stressed state cracks ca
strophically. For our model, in which the bottom sprin
have spring constantk and the other vertical springs hav
t
s

-
-

a
in
n

.
le
-
e
e.

n
-

-

is
-

el

s
a
r

old

all
he

e

n
e
-

spring constant 1, for a~horizontally! uniform state the equi-
librium displacements are given by

ui , j5uj
U5

~ j 21!k11

Nk11
D, ~3!

so that the strain of each spring iskD/(11Nk), except for
the bottom ‘‘k’’ springs, which have strainD/(11Nk). The
system will fail catastrophically if the strain of thek spring
exceedse and this gives us our first threshold,

DU5e~Nk11!. ~4!

The second strain threshold is the Griffith criterion, whi
is theD at which the uniformly strained state becomes me
stable with respect to the cracked state. The energy per
umn of the cracked state,ui , j5D, is just the energy neede
to stretch thek spring to cracking,12 ke2, whereas the energy
per column of the uniformly stressed state is

EU5
kD2

2~Nk11!
. ~5!

The cracked state is thus energetically favored whenD ex-
ceeds

DG5eANk11. ~6!

Note that this is much smaller thanDU for largeN.
This system is known to possess stationary solutions

represent semi-infinite arrested cracks. For completen
and to begin to build the machinery we will need to treat t
moving crack, we briefly outline the solution for this arrest
crack. We choosex50 to be the position of the last un
cracked spring. We solve separately the problem in the
cracked (x.0) and cracked (x,0) regions and then patc
together the two solutions. To solve, we need to know
normal modes of the vertical springs in the two regions. W
define the generalN3N coupling matrix as

MN~m!53
2~m11! 1

1 22 1

1 22 1

�

1 22 1

1 22

4 .

~7!

The coupling matrix on the uncracked side isMN(k), while
on the cracked side it isMN(0). Denote the eigenvectors o
MN(0),MN(k) as jn ,Jn , with eigenvalue ln ,Ln , i
51, . . . ,N. @Here and in the following, lower~upper! case
symbols refer to quantities on the cracked~uncracked! side.#

The equation of equilibrium on either side reads

05ui 11,j22ui , j1ui 21,j1MN; j , j 8~m!ui , j 8 . ~8!

The general decaying solution on the uncracked side,i>0, is
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5156 PRE 59DAVID A. KESSLER AND HERBERT LEVINE
ui , j5uj
U1 (

n51

N

An~Gn! i~Jn! j , ~9!

whereuU is the uniformly strained solution presented abo
and

Gn512
1

2
Ln2A2Ln1

1

4
~Ln!2 ~10!

governs the spatial decay of thenth mode, and satisfie
(G i)

22(22L i)G i1150.
The solution on the cracked side,i<0, is similar:

ui , j5D2 (
n51

N

an~gn! i~jn! j , ~11!

where

gn512
1

2
ln1A2ln1

1

4
~ln!2. ~12!

This solution has 2N unknowns,$An ,an%. The equality of
the two different expressions foru0,j providesN equations.
The equation of motion forx50 provides the otherN equa-
tions. Solving this 2N32N inhomogeneous system yield
the desired answer. The range of validity of this solution
determined by the conditions thatu0,1,e,u21,1, so that the
spring ati 50 is the last unbroken spring.

Doing this, we find that the possibleD’s span a range
DA

2,D,DA
1 that encompasses the Griffith valueDG .

Above DA
1 the crack has to run, for it has no other altern

tive. BelowDA
2 , any initial crack would heal itself.

In Fig. 1, we look atDA
6/DG as a function of width for the

natural casek52 and the casek50.2, where the materia
has been weakened along the incipient crack surface. As
be seen, the effect of the widthN is to widen the window, but
the effect is quite small once things are normalized toDG .
The convergence is numerically consistent with aO(1/N)
behavior. We see thatk, on the other hand, has a drama
effect, closing the size of the allowed window significantl

FIG. 1. DA
6/DG vs N for the casek52, 0.2.
s

-

an

III. MOVING CRACKS N51

We now look at moving cracks, starting, for simplicity
with the caseN51. The key is the Slepyan traveling wav
ansatz

ui~ t !5u~ t2 i /v !. ~13!

We thus only need to find the function of one variableu(t).
Plugging this ansatz into the equation of motion, we ge
differential-difference equation which is nonlocal in time:

ü~ t !5S 11h
d

dtD @u~ t11/v !23u~ t !1u~ t21/v !#

2ku„e2u~ t !…S 11h
d

dtDu~ t !1D. ~14!

We chooset50 to be the moment at whichu exceedse, so
we can replace the step function above byu(2t). As in the
static case, we solve the equation separately in the crac
(t.0) and uncracked (t,0) regions. It is convenient to dis
cretize time with a small time stepdt, so thatt i5 idt. Then
the solution for the uncracked~u! side is

u~ t i !5uU1(
l

Al~G l !
i , ~15!

where now theG are given by those roots of

1

dt2 S G221
1

G D2F11
h

dt S 12
1

G D G@Gnb232k1G2nb#,

~16!

which lie outside the unit circle. The numbernb51/(vdt) is
constrained to be an integer, which implies that our reso
tion in v is limited by our resolution indt. There are 2nb
11 roots of this polynomial~for hÞ0!, some numbernu of
which lie outside the unit circle and thus give rise to au that
converges ast→2`. Thus, the solution for negativet is
parametrized bynu coefficientsAl , l 5$1,2, . . . ,nu%. Simi-
larly, we solve in the cracked~c! region and the solution is
now parametrized bync coefficientsal corresponding to the
roots of Eq.~16! ~with k set to zero!, which lie inside the unit
circle. It can also be shown that for sufficiently smalldt,
nu1nc52nb11. Thus the entire solution is parametrized
2nb11 parameters. As in the static case, the two soluti
overlap, this time for 2nb values of t i , i 52nb ,2nb
11, . . . ,nb21, so the last uncracked equation ati 521
fixes u up to i 5nb21 and the last cracked equation ati
51 likewise fixesu down to i 52nb . The identity of the
two expressions foru in the overlap region give us 2nb equa-
tions. The last equation we need comes from the equatio
motion at the crack pointi 50. Solving this inhomogeneou
system gives us our desired solution. Reading offu1(0)5e
gives us the relation betweenv andD/e that we need.

Again, as in the static problem, there is a consisten
constraint on the solution, namely, thatu1(t) must not reach
e beforet50. In theh50 problem studied by Marder, thi
happens for too smallv. This holds true, as we shall see, fo
sufficiently smallh.
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In Fig. 2, we present data onv versusD/DG for two
values ofh50.2, 2, withk52. Two striking features presen
themselves. First is the divergence of the velocity, wh
occurs for both values ofh at DU calculated in Sec. II as the
displacement at which the entire system wants to break a
Note that in this model, there is nothing wrong withv.1,
the wave speed in our units. The second important featur
these curves is the different behaviors exhibited at the l
hand edge of the graph. The lowh graph exhibits the typica
behavior of a subcritical bifurcation that ends at a squa
root type cusp. The continuation past the cusp to even lo
velocities is a numerical artifact of finitedt and vanishes in
thedt→0 limit. This cusp feature persists in theh→0 limit,
and for smaller velocities the solutions are inconsistent w
the condition mentioned above thatu( i ),e for t,0 and so
are unphysical. For largerh, where the system is sufficientl
overdamped, the solutions persist to zero velocity. Howe
the dependence onD/DG is very singular, and the grap
approaches zero velocity atDA

1 very quickly. Before pro-
ceeding to a full survey of parameter space, it is usefu
develop a naive continuum limit for our system, which
analytically more tractable and serves as a useful benchm
for our discussions. We do this in the next section.

IV. NAIVE CONTINUUM LIMIT

We now develop the naive continuum limit of the equ
tion of motion forN51 steady-state moving cracks. We o
tain this limit by simply replacing the finite difference by
derivative, yielding

ü~ t !5S 11h
d

dtD S 1

v2

d2u

dt2
2uD2ku~2t !S 11h

d

dtDu1D.

~17!

The solution fort,0 is

u~ t !5
D

11k
1A1eQ1vt, ~18!

FIG. 2. Dimensionless velocityv vs D/DG for h50.2, 2 for
N51, k52. The calculation was done withdt50.05. The solid
lines are the naive continuum results for the same parameters
h
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where Q1 is the unique root with positive real part of th
polynomial P@2(11k);Q#, where, in general,P(l;Q) is
defined by

P~l;Q![hvQ31~12v2!Q21~11hvQ!l. ~19!

In general, forl,0, P has one positive root, with the othe
roots having negative real parts. Similarly, the solution
t.0 is

u~ t !5D2a2e2q2vt2a3e2q3vt, ~20!

where2q2 ,2q3 are the two roots with negative real part
P(21;q). One can solve forA1 , a2 , anda3 by using the
continuity of u and its first two derivatives att50.

One can learn a few things from these equations.
pointed out by Langer in his study of a related model@11#,
vanishingh in the continuum is a singular limit, since
controls the highest derivative. Second, the special role
the wave speedv51 is clear. Most interesting, however,
the question of when we expect this continuum limit to
valid. The condition is that at least some of the exponen
decay rates are small, such that the solution will look smo
on the lattice scale. For smallv, Q1;Ak11, q2;1, and
q3;1/(hv), so none of theq’s are small and the continuum
limit is not reliable. For largev, things are different. Here
Q1;v/h, q2,3;(h6Ah224)/(2v). The large value ofQ1
corresponds to the existence of a boundary layer that all
for the matching of the highest derivative term. If this boun
ary layer does not affect the lower order matches~as is fairly
typical!, then we would expect that the continuum result w
agree with the lattice answer.

It is straightforward to work out the small velocity limit o
the continuum theory. Using the limiting values of theq’s
above, and solving the linear system, one gets thae
;D/Ak111O(v), so thatD;DG1O(v). Thus, the con-
tinuum solution starts at the Griffith pointDG with zero ve-
locity and the velocity grows linearly asD is increased. Con-
tinuing the calculation to first order inv, we find v
5(D/DG21)/@(Ak1121)h#. Thus, the velocity is in-
versely proportional toh. This is as expected@9#, since for
v!1 the velocity only enters into the combinationhv.

The large velocity limit is also analyzable. Again usin
the q’s found above, we obtain to leading order thatv
5@(12D /DU)/(kh2)#21/4 so thatv diverges atDU . Note
also that in this regimev scales asAh, so that as viscosity
increases so does the velocity. This is because the only
son that propagation atv.1 is possible is because of th
viscosity, so the larger the viscosity the more efficient t
propagation.

As h goes to zero, the continuum limit must break dow
The velocity increases very rapidly~at a rate proportional to
1/h! to near 1, and stays there untilD is nearDU , at which
point it rapidly diverges. The velocity crosses unity atD
5(11k)2/3 with slope of orderh2/3. Thus, with vanishingly
small h, steady-state propagation, at least in our naive c
tinuum limit, is only possible at the wave speedv51.

We are now in a position to compare our lattice calcu
tion to the continuum results. For example, Fig. 2 above a
displays the continuum curves. We see that, in general,
continuum calculation is very good only at the largest velo
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5158 PRE 59DAVID A. KESSLER AND HERBERT LEVINE
ties. The agreement gets progressively worse for smaller
locities and breaks down completely forD less than the ar-
rest valueDU

1 . This must be, since the continuum calculati
has the velocity going smoothly to zero atDG , which it
never does due to the existence of arrested solutions. A
the agreement is better at largerh; above some criticalh
~abouth'0.5 for k52!, the continuum curve serves as a
upper bound on the lattice curve and thus is a fair appro
mation until we start getting close to the arrest value. All
this is to be contrasted with what would have been obtai
had we seth50 and introduced instead a Stokes veloc
term proportional tou̇. Then, the continuum theory has
limiting velocity of v51 and since this feature is not shar
by the lattice dynamics, the continuum approximation wo
be nowhere accurate.

We saw from the continuum calculation that for velociti
v!1, the relevant parameter for the continuum calculation
hv. We can test this for the lattice model by plottinghv
versusD. This is presented in Fig. 3. It is to be emphasiz
that this scaling is valid only for asymptotically largeh. For
finite h, though, as opposed to what obtained in our c
tinuum calculation, the existence of the lattice length sc
ruins the simple scaling. In practice,h must be fairly large
~about 10 or so! for the scaling law to be a good approxim
tion to the lattice results.

It is interesting to see what happens for smallerk. We saw
that the window of arrested solutions is significantly sma
for smallerk. In Fig. 4, we present the analog of Fig. 2, b
this time withk50.2. We see that the results are as far fro
the continuum limit as they were with the largerk. While the
window of arrested solutions is smaller, so is the value
DU /DG , so the entire picture is just reduced to a sma
range ofD.

Wiener-Hopf solution

Before we turn to generalN, we will present the equiva
lent Wiener-Hopf solution of theN51 problem. This
method is more involved for the caseN51, but it is a model
for the Wiener-Hopf solution we will present for generalN,
which will allow us to draw analytical conclusions in th
largeN limit. The basic method follows that of Marder an
Gross@6#, but the presence of viscosity adds some new tw
which are worthy of comment.

FIG. 3. hv vs D/DG for h51, 1.5, 2, 4, 8 forN51, k52. The
calculation was done withdt50.05.
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To begin, we define the Fourier-transformũ6 of the right-
and left-hand pieces of theu field as follows:

ũ6~K !5E
2`

`

vdtu~6t !eiKvtu~ t !. ~21!

It should be noted thatũ6 are analytic in the upper and lowe
half-planes, respectively. The Fourier transform of theu
field, ũ, is just the sum of the two parts:ũ(K)5ũ11ũ2. In
terms of these fields, the equation of motion reads

05@ ihvK32~12v2!K2#ũ2~12 ihvK !ũ

2k~12 ihvK !ũ21Dd~K !2khvu~0!. ~22!

The last term is noteworthy, and arises because the t
derivative does not act on theu function in the last term in
Eq. ~17!. Expressingũ in terms of its component pieces, w
recognize that the coefficients ofũ6 are nothing but
P(21;2 iK ),P@2(11k);2 iK # respectively, which we en-
countered in our solution above, so that the the equation
motion reads

05P@2~11k!;2 iK #ũ21P~21;2 iK !ũ1

1Dd~K !2khvu~0!. ~23!

Next, we factor theP’s is terms of their roots:

P@2~11k!;2 iK #5 ihv~K2 iQ1!~K1 iQ2!~K1 iQ3!,
~24!

P~21;2 iK !5 ihv~K2 iq1!~K1 iq2!~K1 iq3!.

Dividing Eq. ~23! by ihv(K2 iq1)(K1 iQ2)(K1 iQ3) we
obtain

05
K2 iQ1

K2 iq1
û21

~K1 iq2!~k1 iq3!

~K1 iQ2!~K1 iQ3!
ũ1

2
D

hvq1Q2Q3
d~K !

1
ik

~K2 iq1!~K1 iQ2!~K1 iQ3!
u~0!, ~25!

FIG. 4. Dimensionless velocityv vs D/DG for h50.2, 2 for
N51, k50.2. The calculation was done withdt50.05. The solid
lines are the naive continuum results for the same parameters.
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where we have used thed(K) to simplify its prefactor. We use the fact thatq1q2q352P(21;0)/(hv)51/hv to rewrite our
equation as

05
K2 iQ1

K2 iq1
ũ21

~K1 iq2!~K1 iq3!

~K1 iQ2!~K1 iQ3!
ũ12

Dq2q3

Q2Q3
d~K !1

ik

~K2 iq1!~K1 iQ2!~K1 iQ3!
u~0!. ~26!

To proceed, we have to decompose the two inhomogeneous terms into pieces analytic in either the upper or lower ha
The result is

05
K2 iQ1

K2 iq1
ũ21

~K1 iq2!~K1 iq3!

~K1 iQ2!~K1 iQ3!
ũ12

Dq2q3

Q2Q3
S i

K1 i012
i

K2 i01D
1

ik

~q11Q2!~q11Q3! S 2
1

~K2 iq1!
1

K1 i ~q11Q21Q3!

~K1 iQ2!~K1 iQ3! Du~0!. ~27!

The key to the Wiener-Hopf method is the realization that the sum of the terms analytic in either half plane have to
allowing us to solve forũ6. We find

ũ15
iDq2q3~K1 iQ2!~K1 iQ3!

Q2Q3~K1 i01!~K1 iq2!~K1 iq3!
2

ik@K1 i ~q11Q21Q3!#

~q11Q2!~q11Q3!~K1 iq2!~K1 iq3!
u~0!,

~28!

ũ25
2 iDQ1~K2 iq1!

~11k!q1~K2 i01!~K2 iQ1!
1

ik

~q11Q2!~q11Q3!~K2 iQ1!
u~0!.
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Notice that the poles inũ6 give rise to exactly the sam
exponential terms inu that we found previously. It can b
explicitly verified that the two forms of the solution ar
equivalent. For our purposes, it is sufficient to examine w
happens in the smallv limit. Then, as we have already note
q3 ,Q3'1/(hv). The first, D, term on the right-hand side
approaches a finite limit, withO(v2) corrections, whereas
the second,u(0), term vanishes linearly inhv. More explic-
itly, we find

ũ1'
iDq2q3~K1 iQ2!

Q2Q3~K1 i01!~K1 iq2!
2

ikhv
~q11Q2!~K1 iq2!

u~0!.

~29!

Using q15q251, Q15Q25A11k, and q35Q351/hv,
and using the inverse Fourier transform to evaluate this
the limit x→01, we obtain

u~0!5
D

A11k
2

khv

11A11k
u~0!. ~30!

Recognizingu(0)5e andA11k5DG /e, after reorganizing
we obtain

hv5S D

DG
21D 11A11k

k
, ~31!

which is easily seen to be equivalent to what we obtain
from the direct method. As can be appreciated, the Wien
Hopf method is much more involved than the direct meth
Nevertheless, it will be an essential tool for analyzing t
large-N limit.
t

in

d
r-
.

e

V. GENERAL N

It is straightforward to extend the lattice calculations
arbitrary N. The basic method is the same: we solve t
problem on the two sides of the crack tip position and pa
the two solutions together. The solution on either side
again a sum over modes, which are a direct product of mo
in the vertical direction, given by the eigenmodes
MN(m50,k), with the modes in the horizontal direction
Thus there are a total ofNnu and Nnc modes on the un-
cracked and cracked sides, respectively. The solutions
either side have to overlap for each value of the verti
index j, so there are an appropriate number of equations
the unknown coefficients of each mode. As forN51, the
conditionu(0,1)5e is used to determine the drivingD cor-
responding to a given velocity.

We can also generalize our continuum calculation to fin
N. As in the N51 case, we replace finite differences int
with derivatives, giving usN coupled third-order differentia
equations. Again, we can solve these exactly on either
of the crack tipt50, and match the functions and their fir
and second derivatives at this point. The functions are ch
acterized byN modes on the uncracked side, with decay ra
Q1,n , and 2N modes on the cracked side, with decay ra
q2,n ,q3,n . For eachn, Q1,n is the positive root of the poly-
nomial P(Ln) defined in Eq.~19! above. Let us denote th
other roots of this polynomial, which we will need later, b
2Q2,n ,2Q3,n . Similarly, 2q2,n ,2q3,n are the two negative
~real part! roots ofP(ln) with the third~positive! root being
labeled byq1,n . Implementing these procedures, we aga
calculate the crack velocity as a function ofD/DG . Again,
we compare this data to that of our naive continuum~in x!
calculation for the same value ofN. We present in Fig. 5 the
results for our overdamped caseh52, for N51,2,5,10,15.
Qualitatively, not much changes withN. The most important
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feature is that the middle section of the curves get prog
sively flatter asN increases. This must be the case, since
point of divergence,DU , measured in terms ofDG , in-
creases asN1/2. We also note that the data for low velocitie
seem to converge fairly rapidly asN increases, and the rat
of convergence slows asv increases. Again, as in theN51
case, the continuum results accurately reproduce the la
calculations for largev and are completely wrong for sma
v, missing the lattice-induced arrest phenomenon.

VI. LARGE N

The physical problem of cracking a macroscopic obj
corresponds to the limit of large, but finite,N. The lattice
calculations are prohibitively expensive for too largeN.
However, our naive continuum calculations can be carr
out for fairly largeN’s. Using the fact that for smallv, the
convergence inN is rapid, and for largerv, the naive con-
tinuum results are reliable, we can piece together a fa
complete picture of what we expect in the macroscopic lim
In particular, it is interesting to compare this with the sta
dard continuum theory in order to understand the limitatio
and successes of that theory.

To begin, we present in Fig. 6 the results of our na
continuum theory, extended to larger values ofN. The most
striking feature of this graph is the slow convergence t
sets in nearv51. Exploring numerically, we find that fo
fixed v,1, the data converges with largeN as N21. How-
ever, the coefficient of thisN21 correction becomes eve
larger asv approaches unity. Looking at the value ofD/DG
wherev51, it appears to diverge asN1/6 asN→`. Thus, in
the macroscopic limit, the crack speed is effectively bound
by the wave speed.

To proceed further in studying our naive continuu
theory at largeN, it is useful to derive the Weiner-Hop
solution. To do this, we first Fourier transform the field
writing

uj~ t !5E
2`

` dk

2p
e2 ivKtũj~K !. ~32!

FIG. 5. Dimensionless velocityv vs D/DG for h52 for N51,
2, 5, 10, 15;k52. The calculation was done withdt50.1. The solid
lines are the naive continuum results for the same parameters
s-
e

ce

t

d

ly
t.
-
s

t

d

,

The equations for allj Þ1 are translationally invariant int,
and become algebraic. The structure of these equations

05@ ihvK32~12v2!K2#ũ j1~12 ihKv !MN21; j , j 8~1!ũ j 8

1d j ,2~12 ihvK !ũ11d j ,NDd~K !. ~33!

Defining f (K)[@ ihvK32(12v2)K2#/(12 ihvK) and de-
noting then3n identity matrix asIn , we can, using Cram-
er’s rule, explicitly solve forũ2 in terms ofũ1 as follows:

ũ252
detN22@ f ~K !I1M~1!#

detN21@ f ~K !I1M~1!#
ũ12

~21!ND

detN21M~1!
d~K !,

~34!

where, in the last term, we have used thed(K) to simplify
the determinant. To treat thej 51 equation with its step
functions, we define

ũ65E
2`

`

vdtu~6t !eiKvtu1~ t ! ~35!

so thatũ15ũ11ũ2. The j 51 equation now reads

05~12 ihvK !F @ f ~K !21#ũ1

2
detN22@ f ~K !I1M~1!#

detN21@ f ~K !I1M~1!#
ũ12kũ2G

2khvu1~0!2
~21!ND

detN21M~1!
d~K !. ~36!

Multiplying by detN21@f(K)I1M(1)#/(12 ihvK), we get

05detN@ f ~K !I1M~0!#ũ21detN@ f ~K !I1M~k!#ũ1

2
khvu1~0!detN21@ f ~K !I1M~1!#

12 ihvK
2~21!NDd~K !.

~37!

FIG. 6. Dimensionless velocityv vs D/DG in the continuum
approximation forN510, 50, 200, 400, withh52, k52.
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The determinants are easy to calculate in the diagonal bases of theM’s, and have zeros atK’s corresponding precisely toi
times the roots of the polynomialsP(Ln),P(ln) that we encountered in our original real-space calculation. We can thus

detN@ f ~K !I1M~k!#5~12 ihvK !2N)
n51

N

P~Ln ;2 iK !

5S ihv
12 ihvK D N

)
n51

N

~K2 iQ1,n!~K1 iQ2,n!~K1 iQ3,n! ~38!

and, similarly,

detN@ f ~K !I1M~0!#5~12 ihvK !2N)
n51

N

P~ln ;2 iK !

5S ihv
12 ihvK D N

)
n51

N

~K2 iq1,n!~K1 iq2,n!~K1 iq3,n!. ~39!

Similarly, if we denote the eigenvalues ofMN21(1) by l m , m51, . . . ,N21, we can express detN21@f(K)I1M(1)# in terms
of the rootsx1,m , 2x2,m and2x3,m of P(l m):

detN21@ f ~K !I1M~1!#5~12 ihvK !2N21 )
m51

N21

P~ l m ;2 iK !

5S ihv
12 ihvK D N21

)
m51

N21

~K2 ix1,m!~K1 ix2,m!~K1 ix3,m!. ~40!

We can then reexpress Eq.~38! as

05)
n

K2 iQ1,n

K2 iq1,n
ũ21)

n

~K1 iq2,n!~K1 iq3,n!

~K1 iQ2,n!~K1 iQ3,n!
ũ1

1
ikPm~K2 ix1,m!~K1 ix2,m!~K1 ix3,m!

Pn~K2 iq1,n!~K1 iQ2,n!~K1 iQ3,n!
u1~0!2

D

~hv !NPnq1,nQ2,nQ3,n
d~K ! ~41!

5)
n

K2 iQ1,n

K2 iq1,n
ũ21)

n

~K1 iq2,n!~K1 iq3,n!

~K1 iQ2,n!~K1 iQ3,n!
ũ1

1
ikPm~K2 ix1,m!~K1 ix2,m!~K1 ix3,m!

Pn~K2 iq1,n!~K1 iQ2,n!~K1 iQ3,n!
u1~0!2D)

n

q2,nq3,n

Q2,nQ3,n
d~K ! ~42!
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where in the last step we applied the identity

)
n

q1,nq2,nq3,n5~2hv !2N detMN~0!5~hv !2N,

~43!

and where we have used the easily verified fact t
detMN(m)5(21)N(mN11). Note that this product resu
nicely reduces to the result we previously obtained forN
51. Again, as in theN51 case, to proceed with the Wiene
Hopf method we need to break up the last two terms i
pieces analytic in the upper and lower half planes. Theu1(0)
piece does not appear to have a simple breakup. Howe
for largeN, the effect of this term becomes irrelevant, sin
u1(0) is a factorN1/2 smaller thanD. The last term is easily
broken up as we did in theN51 case. We find that to lead
ing order
t

o

er,

ũ1'DS i

K1 i01D)
n

q2,nq3,n~K1 iQ2,n!~K1 iQ3,n!

Q2,nQ3,n~K1 iq2,n!~K1 iq3,n!
.

~44!

In the largeN limit, we can use this to evaluateu explic-
itly. @We need not concern ourselves withũ2, since for t
,0, u1(t) is always smaller thanu1(0) and so does no
contribute to leading order.# To proceed, we need the explic
form of the q,Q’s to leading order. As we shall see, th
behavior is controlled by modes wheren!N. For these
modes, we may approximate the eigenvalues ofMN(k) by
L1,n5L2,n52n2p2/N2, so that Q1,n5Q2,n

5(np)/(NA12v2), Q3,n5(12v2)/(hv). ~Here we have
assumed thatv is less than and not too close to 1.! Similarly,
for MN(0), we find l1,n5l2,n52(n2 1

2 )2p2/N2, so that
q1,n5q2,n5(n2 1

2 )p/(NA12v2), q3,n5(12v2)/(hv). No-
tice that sinceQ3,n'q3,n , the factors involving these quan
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tities cancel. This has the immediate consequence tha
viscosity h has completely dropped out of the problem
this limit.

The remaining expression has poles at2 i01 and at
2 iq2,n . We can evaluate the residue of each of these p
explicitly. The residue at2 i01 is immediately seen to be
o

cr

A
se

ri-
as

s
Th
th

we
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pi
ur
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Res~e2 iKvtũ1!u2 i015 iD. ~45!

Evaluating the residues at the other poles is more com
cated. To proceed, let us cut off the product at some la
n[Nc!N. Then, our approximate expressions for theq’s
andQ’s are valid. This leads to
Res~e2 iKvtũ1!u2 iq2,n
52 ie2@~n2

1
2 !pvt#/~NA12v2!

GS Nc1
1

2DGS n2
1

2DGS Nc1
3

2
2nD

S n2
1

2DG~Nc11!G3S 1

2DG~n!G~Nc112n!

.2 ie2@~n2
1
2 !pvt#/~NA12v2!

GS n2
1

2D
S n2

1

2Dp
3
2 G~n!

1OS 1

Nc
D . ~46!

We then take the limit ofNc→` to find the final answer for the macroscopic displacement field

u1~ t !5u~ t !DF 12 (
n51

` GS n2
1

2D
S n2

1

2Dp
3
2 G~n!

e2@~n2
1
2 !pvt#/~NA12v2!G

5u~ t !DS 12
2

p
sin21 e2~

1
2 pvt !/~NA12v2!D . ~47!
m

ity
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This final answer exhibits the well-known square ro
branch cut at the crack tip location,t50. It is worth noting
that this behavior of the displacement gives rise to a ma
scopic stress field that actually diverges as 1/x3/2 ~recall the
extra derivative due to the Kelvin viscosity! near the crack
tip. This surprising finding renders invalid the 2d continuum
calculation of Langer@11# who studied this problem with the
additional complication of a finite length cohesive zone.
correct continuum formulation that does reproduce the es
tial formula Eq.~44! is presented in the Appendix.

A comparison of the above prediction with the nume
cally computed displacement is shown in Fig. 7 for the c
N525, plotted as a function of the macroscopic scalevt/N.
We see that our largeN analytic result correctly reproduce
the large-scale structure of the crack displacement.
agreement is a bit worse, though still quite good, close to
crack tip. To demonstrate this more quantitatively,
present in Fig. 8 the ratio of the crack displacementu1(t) to
the large-N analytic result for variousN. Now the data is
plotted as a function of the microscopic scalevt. We see that
curves are all quite similar. They have a square-root div
gence at the origin, since the analytic prediction is thatu(t)
vanishes att50, whereas the true answer is finite. ByN
525, they have converged to a limiting curve. This mea
that the finite-N theory possesses a well defined microsco
structure, in addition to the universal macroscopic struct
defined by the standard continuum theory. This microsco
structure is on the scale of the lattice constant~in the y di-
t

o-

n-

e

e
e

r-

s
c
e
ic

rection! and is of course invisible to the standard continuu
theory.

This observation implies that the entire issue of veloc
selection via the condition thatu(x50,y51) be fixed to
equal the breaking displacement is out of reach of the le
ing order macroscopic limit. Thus, as an example, the vel
ity depends explicitly onh ~as opposed to the macroscop
displacement, which explicitly does not! even for arbitrarily
largeN. Conversely, calculating the macroscopic field in t

FIG. 7. u1(t)/D vs vt/N in the continuum approximation fo
k52, h52, N525, compared with the largeN analytic result, Eq.
~47!.
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continuum limit does not suffice for determining the cra
speed, which is always fixed at the lattice scale. Situati
with equivalent macroscopic fields can have arbitrarily d
ferent crack velocities.

VII. SUMMARY

In this paper, we have studied in some detail the stea
state motion of mode III viscoelastic cracks in a latti
model of the microscopic dynamics. The most importa
findings are as follows.

~1! The existence of a minimum velocity for crack prop
gation is dependent on the viscosity. At lowh ~and indeed in
the lattice models without dissipation that have been stud
to date!, the steady-state branch starts at finitev. For highly
damped systems, on the other hand, the branch extend
the way tov50 at the upper end of the allowed range ofD
for arrested cracks.

~2! For finiteN, a continuum approach~in x! for the crack
does accurately predict the lattice results for values of
driving away from the lattice trapping~low or zero velocity!
regime.

~3! Taking the macroscopic limit (N→`) allows us to
recover the expected macroscopic behavior that the displ
ment grows asAx2xtip once we leave an inner core regio
of the lattice scale. The coefficient of this term can be cal
lated by using a continuum theory with the proper bound
conditions. A key feature of this macroscopic theory is th
the viscosity becomes irrelevant.

~4! However, the velocity selection as a function of t
imposed displacement is wholly controlled by the core a
cannot be accurately arrived at by any theory that does
explicitly consider the lattice scale. In particular, viscos
plays a crucial role in this feature of the physics.

As mentioned in the Introduction, the next step in o
research program will be to consider the modifications int
duced into the aforementioned results by having a cont
ous but nonlinear force law. In particular, having a force t
immediately drops to zero means that there is no way that
system could dynamically decide to create a ‘‘cohesiv
zone of mesoscopic~i.e., scaling as a positive power ofN!

FIG. 8. u1(t)/uAsympt(t) vs vt in the continuum approximation
whereuAsympt is the large-N asymptotic result Eq.~47!, for N51, 2,
5, 10, 25. Again,k52, h52.
s
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proportions. In such a zone, the displacement would be s
that the force law would be beyond the linear spring regi
but not so large that the force would be effectively zero!. If it
were of large size, it would lead to a more complex co
tinuum theory along the lines suggested by Langer and
workers @11,12#; if it were purely on the lattice scale, i
would change nothing. Our initial evidence suggests the
ter, and we hope to report on this in the near future.

As far as the physics of fracture is concerned, we m
address several issues that go well beyond the studies in
paper. Since most of the experiments concern mode I cra
we need to extend our results to that situation; this is te
nically challenging but should not lead to any significa
surprises. Next, we must explicitly investigate the stability
our steady-state equations. Finally, all lattice models le
out the possibility of ductile behavior involving the emissio
of dislocations from the crack tip; comparison to experime
and to molecular dynamics simulations will enable us
learn when these additional phenomena are crucial or, a
natively, when one can get by with a purely ‘‘brittle’’ mode
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APPENDIX: THE DIRECT CONTINUUM CALCULATION

In this appendix, we present a direct continuum~in x and
y! calculation of the steady-state crack. We will see tha
recovers directly the leading-order results of the large-N limit
calculation presented in Sec. VI above.

To begin, we write the displacement fieldu(x,y,t)5u(t
2x/v,y) in Fourier space:

u~ t,y!5D
y

W
1E

2`

` dK

2p
ũ~K !e2 iKvt

sinh@ky~W2y!#

sinh~kyW!
,

~A1!

whereky satisfies the dispersion relation

~12 ihvK !~2K21ky
2!1v2K250. ~A2!

The crack is chosen to begin atx50, so u(x,0,0)50.
On the crack surfacey50, x.0, we must setdu/dy50.
Note that this condition implies that the normal stress on
free surface,@11hv(d/dx)#(du/dy) vanishes. However, it
is incorrect to assume, as Langer@11# did in a parallel cal-
culation, that the vanishing of the normal stress is a suffici
condition, as this allows for~unphysical! displacement fields
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that do not havedu/dy50. As we have seen, the macr
scopic field possesses a square-root singularity at the or
while Langer’s condition eventually results in a mu
weakerx3/2 singularity ~in the absence of Barenblatt typ
surface stresses!. Our condition implies

E
2`

` dK

2p
ũ~K !~2ky!coth~kyW!52

D

W
1u~2t !G~ t !

~A3!

or, Fourier transforming this equation,

ũ~K !~2kyW!coth~kyW!5
2D

W
d~K !1G̃2~K !, ~A4!

whereG̃2 is the transform ofu(2t)G and has no zeros o
roots in the lower half plane. To proceed, we use the iden
y

.

in,

y

kyW coth~kyW!5 )
n51

`

11S kyW

S n2
1

2DpD 2

11S kyW

np D 2 . ~A5!

Now, we can use the dispersion relation to eliminateky in
favor of K. If we define ln[2@(n2 1

2 )p/W#2 and Ln[
2(np/W)2, then we find that

kyW coth~kyW!5 )
n51

`
LnP~ln ;2 iK !

lnP~Ln ;2 iK !
. ~A6!

Notice thatLn ,ln are precisely the same as those in t
finite-N calculation forn!N, if we identify W5N. Express-
ing theP’s in terms of their roots, we get
get

s

the
g that
kyW coth~kyW!5 )
n51

`
Q1,nQ2,nQ3,n~K2 iq1,n!~K1 iq2,n!~K1 iq3,n!

q1,nq2,nq3,n~K2 iQ1,n!~K1 iQ2,n!~K1 iQ3,n!
. ~A7!

Plugging this into Eq.~A4!, and reorganizing, we obtain

ũ1)
n

Q2,nQ3,n~K1 iq2,n!~K1 iq3,n!

q2,nq3,n~K1 iQ2,n!~K1 iQ3,n!
1ũ2)

n

q1,n~K2 iQ1,n!

Q1,n~K2 iq1,n!
5Dd~K !2WG̃2)

n

q1,n~K2 iQ1,n!

Q1,n~K2 iq1,n!
. ~A8!

Decomposing thed function as in the finite-N case, and separating out the pieces analytic in the upper half plane, we

ũ1)
n

Q2,nQ3,n~K1 iq2,n!~K1 iq3,n!

q2,nq3,n~K1 iQ2,n!~K1 iQ3,n!
5

D

W

i

K1 i01 , ~A9!

so that

ũ15
iD

K1 i01 )
n

q2,nq3,n~K1 iQ2,n!~K1 iQ3,n!

Q2,nQ3,n~K1 iq2,n!~K1 iq3,n!
. ~A10!

That this result is the direct equivalent of our leading-order finite-N result, Eq.~44!, is clear. One word of interpretation i
called for, however. To achieve the macroscopic limit of our finite-N result, we needed to take the widthN large. This, in turn,
implied that viscosity was irrelevant in the macroscopic limit~unless we scaled it by a power ofN with no obvious physics
justification!. If we work directly in the continuum, however, we obtain the same final result without having to takeW large.
Thus, the ratio of the viscous length scale toW is arbitrary in this continuum calculation. Nevertheless, if we examine
large-W limit of our continuum calculation, we again will find that viscosity becomes irrelevant. It is also worth reiteratin
this continuum calculation has no sign of the subdominant pieces that control velocity selection.
.
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